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Abstract
One major drawback of deep-learning algorithms is the elevated cost of computing 
complexity and memory bandwidth required for inference. In order to ameliorate 
these costs in applications that utilize Convolutional Neural Networks (CNNs), a 
new, radical, approach is the dynamic pruning of kernels which aims to the par-
simonious inference by learning to exploit and dynamically remove the redundant 
capacity of a CNN architecture. This conditional execution approach formulates a 
systematic and data-driven method for developing CNNs that are trained to eventu-
ally change size and form in real-time during inference, targeting to the smaller pos-
sible computational footprint. The conditional execution however, induces a number 
of challenges when it comes to the implementation of these algorithms to embedded 
systems. In this paper we present a systematic way of deploying this new dynamic 
pruning methodology, in heterogeneous platforms that facilitate both CPU and GPU 
subsystems. Realtime measurements of embedded implementations in modern SoCs 
verify the efficacy of the proposed methodology and demonstrate the ability of the 
dynamic networks to both adapt their size to the complexity of the task and deliver 
significant computational gains during inference.

Keywords  Deep learning · Convolutional neural networks · Heterogeneous 
platforms · Conditional execution · Dynamic pruning

1  Introduction

In recent years, there has been a surge of interest in the potential of Convolutional 
Neural Networks (CNNs) and ever since they have been established as the domi-
nant technology for tackling real-world, visual understanding tasks. A significant 
research effort has been put into the design of (very) deep architectures, able to con-
struct high-order representations of visual information. The accuracy obtained by 
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deep architectures on image classification and object detection tasks [1, 2], proved 
that the depth of representation is indeed the key to a successful implementation.

Although high quality implementations are already available for mainstream, PC-
like computing systems, deploying such implementations into diverse technologi-
cal areas (i.e. automotive, transportation, IoT, medical etc.), requires development of 
deep-learning architectures on embedded heterogeneous platforms that operate with 
limited hardware resources and often within a restricted power budget. Authors in 
[3] present a study of the available deep-learning frameworks, programming models, 
general implementation limitations as well as real-world performance results on het-
erogeneous platforms, focusing on mobile phone SoCs and android OS. The scope 
of this study though, is to represent general implementation guidelines rather than a 
detailed scheme on how to deploy CNNs on such platforms.

Furthermore, meeting specific performance requirements on embedded plat-
forms is, in general, arduous, while building systems based on existing computing 
libraries (e.g. BLAS, Eigen etc.), although possible, usually leads to only limited 
effectiveness, according to the authors’ experience. Based on the above discussion 
it becomes evident that improving such approaches requires tuning multiple com-
putational kernels for the particular use-case at hand, thus requiring great effort and 
insight in order to be able to tweak—when and if necessary—any given architecture.

Structural plasticity, that is the ability of sparsely connected networks to change 
their wiring and connectivity patterns, has proven to be a key mechanism of neu-
ronal circuits [4], increasing a network’s learning capacity through the expansion 
of the “effectual connectivity”. A form of this mechanism can be integrated into 
the deep CNN architectural models, the most demanding class of advanced infer-
ence algorithms, especially dominant in the field of vision-oriented applications. In 
CNNs, the computational graph is organized into groups of nodes—called layers—
where the main operation is the convolution of an input tensor with a set of kernels 
with learned weights. The connectivity of the computational graph, and the number 
of kernels is defined during training and are fixed during inference.

Under this scheme, a form of dynamically altering connectivity can naturally 
occur, by integrating a mechanism able to decide the number and identity of the ker-
nels that need to be computed during inference, based on the data being processed 
on each occasion and discard the rest. Intuitively, such mechanism can effectively 
enable a large number of sub-models to be potentially available, each of which using 
a subset of the learned kernels and layers. That way, the capacity of the initial model 
is increased, with apparent benefits to both accuracy and computational parsimony. 
In fact, such models have proven to be effective for both simple [5] and more chal-
lenging applications [6]. Given the intrinsic bottlenecks occurring by the branching 
operations on the computational flow of models with conditionally executed parts, 
the question that arises is whether their theoretical advantages can be translated in 
real time/power gains, when implemented in off-the-shelf heterogeneous platforms.

This paper focuses on some implementation techniques, that they enable effi-
cient porting of the approach explained above to modern heterogeneous SoCs, that 
are optimized for high throughput and implement highly parallelized processing 
schemes. Experimental evidence is demonstrated, supporting that popular mobile 
SoCs featuring a number of CPU cores and GPUs such as Adreno and MALI, on 
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chipsets like Snapdragon 820 and Exynos 8, can actually deliver the predicted per-
formance benefits of this approach when utilized in a heterogeneous setup. The 
outcome of the experiments indicates that with proper handling, the total overhead 
induced by factors such as (i) extra operations for identifying the appropriate kernels 
to be applied for each layer, (ii) memory re-organization, (iii) inter-device communi-
cations and branching-related delays, can be limited to ~ 10% of the overall compu-
tational time of an equivalent static model. Therefore, the exploitation of a dynamic, 
conditional graph can be beneficial if it can deliver the same accuracy for a discount 
over 10% in the computational budget, compared to the corresponding static solu-
tion. This is a rather modest goal for such techniques, which even for very challeng-
ing problems and compact CNN model architectures, can deliver more than 30% 
reduction in overall (average) Multiply-ACcumulate (MAC) count compared to the 
original model, without loss of accuracy [6].

2 � Reduction of the Computational Load of a Neural Network

2.1 � Static Pruning

The reduction of the computational load associated with a specific deep-learning 
structure is the enabling factor towards the broadening of the application field of 
these structures to IoT and in applications featuring a system with low computa-
tional capabilities, in general. In this direction, many researchers attempt to exploit 
the data sparsity and the redundancy of the parameters inherent in CNNs in order 
to prune some parts of the convolutional network and thus ease the computational 
load of the overall structure, in an off-line, post-training approach. In some methods, 
the coefficients of a CNN are analyzed after training and some of them are zeroed 
according to their magnitude, leading to sparse matrices exploitable by sparse arith-
metic software. In some others, the CNN is trained in such a way so to result on a set 
of coefficients containing as few insignificant coefficients as possible.

In a data-driven approach Hue et al. in [7] proposed a method which iteratively 
optimizes the network by pruning unimportant neurons based on analysis of their 
outputs on a large dataset.

Feng et al. [8] proposed a method for estimating the structure of the model by uti-
lizing un-labelled data. Their method called Indian Buffet Process CNN (ibpCNN), 
captures the distribution of the data and accordingly balances the model between 
complexity and fidelity.

Similarly, Wen et al. [9] incorporated Structured Sparsity Learning (SSL) in order 
to regularize the number of filters (and their shapes), the number of channels and the 
depth of the network. From an implementation perspective, SSL also targets to the 
formulation of a dense weight matrix in order to completely remove channels, filters 
or even whole layers.

Yang et  al. [10] proposed an energy-aware pruning algorithm for CNNs that 
directly uses energy consumption estimation of a CNN to guide the pruning process. 
For each layer, the weights are first pruned and then locally fine-tuned with a closed-
form least-square solution to quickly restore the accuracy.
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Authors in [11] proposed a three-step method, which allowed them to prune 
redundant connections without affecting the accuracy. In the first step, they train 
a network to learn which connections are important. In the second stage, connec-
tions characterized as unimportant are pruned and in the last stage, the network is 
re-trained in order to fine-tune the weights.

Similarly, in [12], authors target implementations for low power devices, by tak-
ing advantage of the sparsity immanent in intermediate filter responses in order to 
reduce the spatial convolution at every layer. More specifically, they are inspired by 
the loop perforation technique (originally proposed for source code optimization) in 
order to skip the convolution operation at several locations.

2.2 � Dynamic Pruning

Since the main source of computational load in a CNN is the number of convolu-
tional kernels employed in each convolutional layer, one idea proposed in [6] and 
reviewed here, is to enforce channel-wise sparsity to the outputs of each convolu-
tional layer. In this way, each kernel either learns how to capture useful information 
or else vanishes. In contrast to the regularization approach [9], which tries to enforce 
a global sparsity pattern in order to prune kernels and channels with zero output val-
ues, we propose a technique that enables kernels to learn information which may be 
useful to a subset of the observed cases. One step forward, by enforcing this sparsity 
via simultaneously learned, data-driven, kernel activation rules, the same rules can 
be used during inference in order to avoid computing kernels which are not useful 
for a particular datum. That way, only the relevant kernels are computed, resulting 
to a significant economy in processing time and power. At the end of the training 
procedure, kernels that have not managed to learn features that are relevant to any 
of the data, resulting to zero utilization, can be permanently pruned from the model.

2.3 � The Learning Kernel‑Activation Module

Figure 1 depicts i-th and the (i + 1)-th convolutional layer of a typical convolutional 
network and introduces the Learning Kernel-Activation Module (LKAM). The 
LKAM links two consecutive convolutional layers and acts as learning switch, capa-
ble of switching on and off individual kernels of any layer depending on its input, 
that is, the output of the previous convolutional layer.

The module learns which kernel to disable during the CNN training process, 
which is for that reason specifically devised to facilitate such operation by exploiting 
data sparsity usually employed in images.

The aim of these modules is initially to induce the desired channel-wise spar-
sity to the feature maps. Simultaneously, they learn an activation rule for each ker-
nel, which is later been exploited during the inference phase. Many types of activa-
tion rules can be formulated using regular differentiable functions, available in all 
deep-learning frameworks. In this work one of the simplest and lightweight rules 
is studied, constituting by a bank of 1 × 1 convolutional kernels followed by aver-
age pooling and a sigmoid function offering a smooth and differentiable transition 
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between active and inactive state. The choice of this rule was made in order to keep 
the computational overhead of the LKAM modules as low as possible. The internal 
structure of the LKAM module is shown in Fig. 2. First, the feature maps of the i-th 
convolutional layer are fed into this module. These are processed by kfi + 1 kernels 
of size 1 × 1 × Ci + 1 resulting into kfi + 1 feature maps. These maps are then fed into 
a global average-pooling block, which averages the values of each map producing a 
corresponding single number.

Fig. 1   The learning switch module is introduced between successive convolutional layers of a CNN

Fig. 2   The internal structure of a LKAM module
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Each one of this numbers is then passed into a sigmoid layer implementing the 
following function:

In this way a vector SW =

{

sw1, sw2,… , swkfi+1

}

∈ ℝ
kfi+1 with values between 

0 and 1, is formed.
The elements of this vector are used in the training phase, through the switch 

S3, in order to multiply the values of the corresponding feature map in the 
(i + 1)-th convolutional layer, thus imposing the desired sparsity. During this 
phase, switches S2 in Fig. 1 and S3 in Fig. 2 are activated, while switches S1 in 
Fig. 1 and S4 in Fig. 2 are deactivated. This way, the information flow is tweaked 
by enforcing certain feature maps to gradually have smaller influence on the over-
all network under the corresponding rules, which are in turn co-adapting. The 
goal of the training process is to obtain the combination of kernels and activation 
rules that produce the sparsest SW  vectors possible. The learned rules can indi-
cate the kernels with zero influence so as to be excluded from further computa-
tion. These invalidated kernels will eventually lead to excluding the respective 
CNN channels from the overall computation load, resulting in both less MAC 
operations and significant speedup in inference timings.

2.4 � Real‑Time Deactivation of Kernels During Inference (Recognition) Phase

During inference, the elements of the vector SW are used as a set of switches that 
control the corresponding kernels in the (i + 1)-th convolutional layer, depend-
ing on the input from the i-th layer (Fig. 3). Since the value of each swi can be 
any real number between 0 and 1, a simple thresholding is used as the activation 
criterion, where the elements of the vector SW are binarized (i.e. forced to take 
values 1 or 0) using a threshold value, thres, as follows:

(1)f (x) =
1

1 + e−k(x−x0)

Fig. 3   The switching process of the LKAM module during inference
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The resulting binary activation values are the indicators of whether to apply the 
corresponding filtering kernels on the input data or to skip these particular computa-
tions. Note that during inference, switches S2 in Fig. 1 and S3 in Fig. 2 are consid-
ered active while switches S1 Fig. 1 and S4 in Fig. 2 are considered inactive.

3 � Implementation Considerations of Dynamic Pruning

When the above-mentioned dynamic pruning scheme is applied over a convolutional 
layer, fewer convolutional kernels are eventually used and the resulting feature map 
consists of a three-dimensional tensor which has several invalidated channels. These 
invalidated channels, that correspond to the kernels that were not used in the convo-
lution, should be excluded from any operation of any following-up layer that is using 
their data. For network layers that may need to operate with data that are directly 
related with the excluded channels, it’s important to have access to the information 
of which channels have been excluded. That essentially means that Dynamic Prun-
ing requires considering pruning information transmission among network layers as 
well. This information is usually an array of indices of the valid channels.

In this paper the focus in on Convolutional and Full Connected layer CPU/GPU 
implementations since those layers contribute the most to the overall computational 
complexity of the CNN.

3.1 � Implementation of Convolutional Layers

The implementation of a convolutional layer is based on General Matrix Multipli-
cation (GeMM) algorithms. GeMMs consist a well-studied problem and several 
GeMMs implementations has been incorporated into a lot of highly optimized 
libraries. Such implementations realize the data prefetching/caching, vectorization 
and threading mechanisms, that do exist in modern heterogeneous systems, very effi-
ciently which in turn leads to lower latency and increased processing performance.

In general, the input feature maps of the convolutional layers need to be trans-
formed properly in order to be used with GeMMs. The required preprocessing trans-
formation is achieved via algorithms that convert the three-dimensional tensors to 
two-dimensional arrays, properly designed for GeMM processing. These transfor-
mations, namely im2col (image-to-columns) or im2row (image-to-rows), come at 
the costs of preprocessing speed and increased memory footprint as they do repli-
cate the data. Their preprocessing speed impact, however, compared to the following 
up GeMM algorithms, is often negligible.

Assuming that the GeMMs algorithms are provided as optimized “black-box” 
libraries, meaning that the end user has no access to view and modify their imple-
mentation, the im2col pre-processing step should incorporate all the necessary 

(2)swi =

{

0, swi < thres

1, swi ≥ thres
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changes to accommodate the dynamic pruning throughout the whole convolution 
process.

Given the predefined size of the kernels that are used in a convolution operation, 
the im2col algorithm is designed to create a column with the corresponding input 
tensor data that should be convolved with the kernel in order to result a number for 
the output tensor. Supposing that there are Kn kernels of dimensions 

[

Kc,Kh,Kw

]

 , 
then the im2col algorithm should produce, for every expected output, a column with 
length equal to Kc × Kh × Kw . Supposing that the output of the convolution should 
be a tensor of dimensions 

[

Kn,H,W
]

 , then this can be achieved by the GeMM opera-
tion as provided in Eq. 3 and depicted graphically in Fig. 4.

The inactive kernels can be easily handled. They should not be included in the 
left matrix of the GeMM formula (3) which corresponds to the gray parts of the 
Fig.  4 that can be omitted. This means that the kernels array 

[

Kn,Kc × Kh × Kw

]

 
should be replaced with the array 

[

Ka,Kc × Kh × Kw

]

 where Ka ≤ Kn is the number 
of active kernels for the convolution. For CPU-based implementation this change 
will require a proper copy of the coefficients of the initial kernels to an intermediate 
memory buffer according to the corresponding coefficients of the active kernels. In 
the worst case scenario, where Ka = Kn − 1 , almost a full copy of the coefficients 
in the intermediate memory will be required (note that if Ka = Kn there is no need 
for intermediate buffer). The GeMM algorithm will then produce a tensor of shape 
[

Ka,H,W
]

.
For the excluded input channels, further actions should be taken on the algo-

rithm implementation, such as the exclusion of these channels, by the im2col 
algorithm, at its output. Since in the above-mentioned approach the output of 
dynamic pruned convolutions will only contain the activated channels in a shape 
[

Ka,H,W
]

 , the im2col algorithm eventually will not have to deal at all with the 
inactive channels. However, the inactive channels should still be removed from 
the coefficients of the convolution kernels. If the kernels have initial shape 

(3)[Kn,Kc × Kh × Kw] × [Kc × Kh × Kw,W × H] = [Kn,W × H] == [Kn,H,W]

Fig. 4   Convolution with im2col and GeMM algorithms



1 3

International Journal of Parallel Programming	

[

K
�

n
,K

�

c
× K

�

h
× K

�

w

]

 , there are Ka ≤ Kn active input channels and K ′

b
≤ K

′

n
 active 

kernels for the convolution. Hence, a proper copy of coefficients should take 
place to result into coefficients of shape 

[

K
�

b
,Ka × K

�

h
× K

�

w

]

 . Then, the GeMM will 
produce the expected result as provided by the Eq. 4. A graphical depict of this 
operation is given at Fig.  5, where two out of five inactive channels have been 
excluded due to a previous dynamic pruning operation (light gray tone). Although 
im2col algorithm will automatically ignore those excluded (non-existed) chan-
nels, proper care must be taken in the first part of the GeMM operation thus to 
exclude also the coefficients of the convolution that corresponds to the excluded 
channels (black tone). At the same time inactive kernels (gray tone) are taken into 
consideration as analyzed before (Fig. 4).

The above procedure, described for CPU-based implementations, can be in 
general also used for GPU-based implementations as well. However, GPUs offer 
the ability to employ more efficient approaches avoiding issues such as data pre-
processing, especially if they require a lot of GPU memory (e.g. for im2col trans-
formations) or extra copying of coefficients to intermediate buffers.

The key to understand GPU OpenCL-based implementation is to understand 
the notion of global and local workgroups (WGs) and workitems. A workitem 
(WI) it can be seen as a thread that executes a block of code in parallel to other 
WIs. Several WIs forms a local WG (LWG) and inside the LWG, the WIs can 
have access to the same L1 cache and the local shared memory (LDS, if sup-
ported) which is relatively small but very fast. Typically, LDS is used to enable 
coalesced accesses, to share data among the WIs in an LWG and reduce accesses 
to global memory which is of lower bandwidth. Each WI inside the LWG can be 
identified by unique local IDs that are available via built-in functions (i.e. get_
local_id()). It must be noted that, in general, not all the WIs inside an LWG are 
executed in parallel but tends to be divided in sub-groups (wavefronts/warps) of 

(4)

[

K�
b
,Ka × K�

h
× K�

w

]

×
[

Ka × K�
h
× K�

w
,W � × H�

]

=
[

K�
b
,W � × H�

]

==
[

K�
b
,H�

,W �
]

Fig. 5   Convolution with excluded input channels using im2col and GEMM
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WIs that are indeed executed in parallel. GPU scheduling mechanisms continu-
ously and properly activate the warps in the LWG, and among different LWG if 
it’s possible, in order to hide latencies.

The size of a warp is important because if the WIs of the same warp are forced 
to execute different code (for example via -if statements) all code-diverging paths 
will be executed and the outcome will be masked in the end, increasing this way 
the processing time. Each LWG is running on a Compute Unit on the GPU and all 
the LWGs forms the global workgroup (GWG). That means that each LWG can 
be identified by unique group IDs using the built-in functions (i.e. get_group_
id()). As all WIs are executing the same OpenCL function, the function’s code 
must utilize the local and group IDs in order to properly process different kind of 
data. The local and group IDs in OpenCL are expressed as a 3D notion i.e. they 
are described by three different indices. Hence, each WI is identified by three 
local ids and three group ids. The above description is depicted visually in Fig. 6.

Under the above design scheme of accessing and programming the GPUs, it 
becomes obvious that the algorithms implementation can be quite different com-
pared to the CPUs. An approach to implement GPU algorithms is to start by map-
ping regions of output data to LWGs, trying to avoid multiple utilization of com-
mon input data among the different LGWs. The output should be also selected 
in such way for the input to be cache friendly. Knowing the number of Compute 
Units of the hardware, typically the number of LWGs should be a multiple of that 
number in order to utilize at maximum all Compute Units.

In all our test-designs the GWG is designed to have three dimensions. In most 
of the cases each dimension is related with a specific operational part of the con-
volution algorithm as depicted in Fig. 7. More specifically:

Fig. 6   GPU and WorkGroups/WorkItems interrelationship
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1.	 One dimension is always referring to the batch processing, i.e. is related to the 
image index that is processed during a batch processing. Based on this dimension 
the input/output memory address pointers are changed accordingly.

2.	 Another dimension is usually referring to a number of convolutional kernels that 
the LWG will process.

3.	 The remaining dimension is referring to the y-index of a block of an image that 
is processed by the LWG.

The order of the index of the GWG dimensions in correspondence to the opera-
tional parts of the convolution, in most of the cases does affect the processing speed, 
as it’s closely related to the order of the executed LWGs in each compute unit and 
thus the way of using the intermediate caches. Therefore, different combinations of 
indexing between of the GWG dimensions and the corresponding operation parts of 
the code need to be evaluated in order to select the optimal one.

In some cases, however, where for example a convolution layer does have group-
ing, further dimensions can be used, encapsulated into the three dimensions. For 
example, if the local id in the 0 dimension can take values lid0 ∈ [0, 64) then it can 
produce two new local ids:

•	 lid0a = lid0 ÷ 32 : thus lid0a ∈ [0, 2) and can be used as group identifier for the 2 
groups

•	 lid0b = lid0%32 : thus lid0b ∈ [0, 32) and can be used as WI index per group for 
the 2 groups

For GPUs that support LDS memory inside the LWGs, custom code is written to 
use as much WIs as possible in order to load reusable data in the LDS memory. Zero 

Fig. 7   Graphical example of the correspondence between GWG dimensions with the convolutional ker-
nels and input data processing
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padding cases are also handled in this step by loading the data to specific position 
of the LDS memory, having first filled once all that memory with zeros. Memory 
synchronization usually occurs afterwards, unless the WIs that loads specific local 
memory parts utilize only these parts later.

Further optimization involves the implementation of direct convolution operators 
by using vectorized types (e.g. float4), broadcasting mechanism (e.g. first operand of 
multiplication is common for many WIs and the load is broadcasted fast from local 
memory), and registers for accumulation. This happens iteratively, among input 
channels for any group of filters that each WI is responsible to calculate. At the end 
a Rectified Linear Unit (ReLu) is applied using a vectorized build-in max function 
and the partial results are stored in output memory. In cases where the convolutional 
kernels do not have unitary spatial size, or in cases where padding or different than 
one stride is required, the source code can become quite complex.

It should be noted that a key difference between the GPU-based and CPU-based 
implementations, is that all copies of coefficients to temporal buffers are completely 
avoided. Instead the indexes of the active kernels are held in a buffer and only the 
WIs that work on those active kernels are activated and load properly the coeffi-
cients from the difference memory addresses. GPU’s prefetching mechanisms come 
handy at this point as they hide well the latency of loading sparse memory addresses 
(non-consecutive convolutional kernels in memory) by consecutive WIs.

3.2 � Implementation of Full Connected Layers

Common implementations of Full Connected (FC) layers, follow a Vector-to-Matrix 
multiplication, a task that can be directly and efficiently handled by most of the 
GeMM algorithms. For conditional computing implementation, the only occasion 
that GeMM cannot properly handle directly is when the output of a convolution 
layer must be interpreted as a one-dimensional array for the following FC layer. This 
case is usually implemented via an additional “flatten” or “reshape” layer. As in the 
case of the Convolutional layers the coefficients of the FC layer that corresponds 
to excluded channels must be excluded from the GeMM operation too. However, 
since the coefficients of the Full Connected layers are stored with a notion of two-
dimensional tensors, instead of four-dimensional arrays, the correspondence of the 
excluded input channels to the coefficients of the Full Connected columns must be 
taken into consideration in order to exclude them correctly from the GeMM opera-
tion. The exclusion of the coefficients is achieved by making use of a coefficients 
buffer where only the coefficients that should take place in the GeMM operation are 
stored.

From all the above it becomes evident that, for Dynamically Pruning Convolu-
tional and FC layers in CPU-based implementations using the GeMM approach, 
there is a need of memory copies of the coefficients of the kernels to intermediate 
buffers. These memory copies introduce an overhead in the overall performance that 
in the worst case can lead to almost loading and storing one additional time the coef-
ficients of the network per inference. However, if the number of dynamic activated 
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kernels is not very high, depending the convolutional parameters, the gains on pro-
cessing speed/power can be quite significant.

In the case of GPU implementation, where the FC layer is realized as a vector to 
matrix multiplication, an approach is to use each LWG to calculate the result of a 
few kernels. By testing various implementations, the authors found that the optimal 
way for achieving this is to iteratively use a number of N WIs to load consecutively 
N input data and apply multiply-accumulation over a number of M FC kernels, hold-
ing the results in M registers. This approach is cache friendly and does not require 
vectorized types. As in the CPU-based implementations, is important to know 
which coefficients corresponds to which active channels. This requires an index-
ing array that maps the input tensor’s channels (before flattening) to corresponding 
active kernels. Then, the procedure of the Full Connected layer is similar to non-
dynamic pruning case, with the exception that coefficients should be loaded from 
indexed memory addresses. If the dynamic pruning procedure activates all the ker-
nels, the indexing mechanism can introduce latency of as large as 25% of the total 
processing time. However, this indexing mechanism can lead to performance gains 
for each inactive kernel. As an example, for a multiplication with dimensions [256, 
4096] × [4096, 1] the processing time without the indexing mechanism takes roughly 
12 ms in a MDP820’s GPU. When the indexing mechanism is engaged, the process-
ing time for the same multiplication is increased to 15.5 ms. For the dynamic prun-
ing case the number of the active kernels can be considerably smaller. For example, 
in a case where only 47 out of 256 kernels are activated, the operation corresponds 
to a multiplication with dimensions [47, 4096] × [4096, 1] and in that case exhibits 
a processing time of just 3.5 ms. According to authors experiments, this is a general 
trend, leading also to comparative performance gains for the overall network model.

4 � Experimental Results

Our analysis has been conducted in two different classification problems: (a) A food 
recognition problem, utilizing the FOOD-101 database [13] comprised of images of 
food, organized into 101 categories and (b) a general image recognition problem uti-
lizing the ImageNet ILSVRC 2012 [2] dataset comprised of images organized into 
1000 categories. These two datasets have been chosen as two classification cases 
featuring different qualities. In particular, FOOD-101 is considered as a less com-
plex classification case compared to the ILSVRC 2012 dataset due to the smaller 
number of classes but featuring more abstract visual attributes since food styling can 
be very diverge. On the other hand, ILSVRC 2012 dataset contains images mainly 
depicting a single structured object, but similar classes are often discriminated by 
very fine details.

In the same spirit, two popular CNN architectures have been evaluated: Caff-
eNet and SqueezeNet 1.1 [14]. CaffeNet is almost identical to AlexNet [1] archi-
tecture, being a conventional “vanilla” architecture with a medium-sized parameter 
space but relatively shallow. On the other hand, SqueezeNet is a deeper architecture 
incorporating more complex architecture, and although consisting of 50 times less 
parameters compared to a CaffeNet, it has similar classification performance. The 
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study of these two architectures that exhibit vastly different characteristics in terms 
of redundancy, is used to highlight the ability of the proposed framework to achieve 
the required computational parsimony under very different circumstances, by being 
responsive to the complexity of the data and also to the complexity of the model.

4.1 � Recognition Accuracy

The recognition accuracy obtained by training the two architectures under the pro-
posed framework is summarized in Table 1. The threshold for the activation of ker-
nels is 0.5 and the classification accuracy was measured on the validation set for 
ILSVRC and the test set for FOOD-101. The accuracy on the ILSVRC is compared 
to the reference baseline models for CaffeNet and SqueezeNet1.1 available on-line.

It is evident that the introduction of an objective towards computational economy 
has not degraded the obtained accuracy on either of the tested architectures. On the 
contrary, we observe a notable improvement of the classification accuracy compared 
to the reference models, on both datasets and both architectures. This reveals the 
dynamic of the approach, regarding the overall control of the functionality of these 
CNNs.

4.2 � Computational Load

The most important aspect of the presented framework though, is the improvement 
on the required computational load during inference. A detailed analysis of these 
two configurations is presented below.

Evaluation on CaffeNet has been contacted for both ILSVRC 2012 and FOOD-
101 datasets.

Engagement of the LKAM modules results on the reduction of the kernel filter-
ing operations. This is shown graphically in Fig. 8a, b through the respective kernel 
activity profiles. In these plots, the vertical axis corresponds to the activation fre-
quency of a particular kernel throughout the validation set, while the horizontal axis 
corresponds to the kernels of each layer, sorted by ascending utilization (from left to 
right). For visualization purposes, the horizontal range is normalized and equal for 
all layers, even though they accommodate different population of kernels. In such 

Table 1   Recognition accuracy for the CaffeNet and SqueezeNet models on the ILSVRC 2012 and 
Food101 datasets

PI stands for Parsimonious Inference approach (this paper)

Recognition Accuracy (%) ILSVRC 2012 FOOD-101

Top1 Diff. Top 5 Diff. Top1 Diff. Top 5 Diff.

AlexNet-Conv 57.27 – 80.62 – 68.54 88.44 –
AlexNet- PI 58.46 +1.19 81.21 +0.59 68.86 +0.32 88.61 +0.17
SqueezeNet 1.1-Conv 57.59 – 80.44 – 65.65 86.87 –
SqueezeNet 1.1-PI 59.59 +2.0 82.05 +1.61 67 +1.35 88.04 +1.17
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an illustration, a step-like plot implies kernels that are mostly permanently switched 
either off or on, while a smooth curve indicates kernels whose operation is data-
dependent. More specifically, the number of kernels that are calculated for each test 
image is significantly lower than the nominal number of kernels in the original net-
works. This dramatically reduces the related number of mathematical operations. It 
must be noted again that the reduction on the active kernels in a single layer, besides 
the obvious benefit of avoiding the corresponding filtering computations, results into 
a respective reduction in the number of input channels into the next layer. This in 
turn, offers an additional computational gain, directly proportional to the number of 
switched-off kernels.

A statistical analysis on the switching activity of the CaffeNet for ILSVRC 2012 
dataset reveals that only 64.27% of the network’s kernels are active (on average) 
throughout the validation set (35.73% reduction). Specifically, 75.55% of the layer 2 
kernels, 57.03% of the layer 3 kernels, 46.93% of the layer 4 kernels and 77.58% of 
the layer 5 kernels are, on average, activated.

The reduction of the computational load, in terms of the total MACs operations, 
has been computed to be at 38.31% compared to the reference CaffeNet, taking also 
into account the computational overhead introduced by the switching modules.

The same analysis on the FOOD-101 dataset indicates that throughout the valida-
tion set, only 14.52% of the kernels are activated in the layers of the network. Specif-
ically, 28.49% of the layer 2 kernels, 4.55% of the layer 3 kernels, 6.91% of the layer 
4 kernels and 18.15% of the layer 5 kernels are activated on average. Evaluation on 
SqueezeNet 1.1 has also been conducted on ILSVRC 2012 and FOOD-101 data-
sets. On the ILSVRC 2012 dataset, the engagement of the LKAM modules results 
again to the reduction of the kernel filtering operations. This is shown graphically in 
Fig. 9a, b. A statistical analysis on the switching activity of the SqueezeNet 1.1 for 
the ILSVRC2012 dataset reveals that on average throughout the validation set, only 
68.28% of the kernels are active in the layers of the network leading to a 31.72% 
reduction.

The results for both CaffeNet and SqueezeNet networks clearly suggest that the 
proposed architectural modification results into a significant reduction of the active 

(a) (b)

Fig. 8   Kernel Activity Profile for CaffeNet: a ILSVRC 2012 dataset, b FOOD-101 dataset. A large part 
of kernels remains permanently inactive
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kernels during inference time. Of equal importance is the fact that the networks 
adapt their form and size, depending on the data and the complexity of the classifi-
cation problem: CaffeNet demonstrates a decrease in the average number of active 
kernels necessary for carrying out the recognition on the FOOD-101 dataset com-
pared to that of the ILSVRC2012 dataset, regardless of being trained with the same 
regularization gains. That means that the corresponding network features an excess 
learning capacity, not needed for carrying out this classification task, having got rec-
ognized as such and automatically eliminated by the presented training scheme.

4.3 � Embedded Implementation and Inference Speed Measurements

The validity of the proposed dynamic pruning, parsimonious, approach has been 
verified for the CaffeNet and SqueezeNet v1.1 architectures on four different plat-
forms, namely, the Intrinsyc MDP-820 (Qualcomm Snapdragon 820 with Kryo 
ARM/Adreno 530 GPU), the Xiaomi Redmi Note 4 (Mediatek MT6797 Helio X20 
with ARM/Mali-T880 MP4 GPU), the LG-G4 (Qualcomm SnapDragon 808 with 
ARM/Adreno 418 GPU) and the Samsung S7 Edge (Exynos 8890 Octa with ARM/
MALI-T880 MP12 GPU) and the inference speeds of the above were compared with 
the respective baseline models on the ILSVRC 2012 and FOOD-101 datasets and 
by using different deep-learning frameworks such as Caffe, Caffe2, TensorFlow, 
Neural SDK [15] and DeepAPI (deep-learning library/framework) developed by the 
authors [16].

On the above-mentioned experiments the inference computations were either 
a) assigned entirely to the respective CPU, b) offloaded to the GPU while CPU is 
mostly used for housekeeping functions, or c) partitioned between the CPU and the 
GPU. Table 2 depicts the timing performance of the a MDP820-based, parsimoni-
ous inference (PI) approach in the case of SqueezeNet v1.1(SQNet1.1) and CaffeNet 
CNNs, on the FOOD-101 dataset, for specific combinations of CPU and GPU batch 
sizes, indicating overall speedup of × 1.3– × 2.0 times is achievable, against the con-
ventional baseline CNN implementation, when the proposed, conditional execution 
approach is deployed. Table 3 includes the acquired mean inference time measure-
ments for the two CNN architectures under considerations for both baseline and PI 

(a) (b)

Fig. 9   Kernel Activity Profile for every layer (fire module) of SqueezeNet 1.1: a ILSVRC 2012 dataset, 
b FOOD-101 dataset. For the easier FOOD-101 problem kernels are mostly either permanently active or 
inactive
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implementations, developed under different frameworks and running on various 
devices and hardware (CPU and/or GPU or DSP).  

In all these platforms the GPU is programmed in OpenCL, using hand-optimiza-
tions aiming to avoid any pre- and post- processing operations at convolutions lay-
ers, minimize memory usage by avoiding temporary memories, reduce as much as 
possible the data transfers from/to GPU and efficiently exploit the de-activation of 
the kernels.

From Table 3, it is evident that the implementations derived from the proposed PI 
methodology lead to faster inference times due to the economy in the computations 
of filtering kernels while not jeopardizing the CNNs accuracy. It must be noted how-
ever that the inference speed-up although proportional to the reduction of the total 
MACs, is not equal to that. For example, for the GPU implementation of CaffeNet/
ILSVRC2012 in Samsung S7 Edge the speed up gain is about 28.3%, while the cor-
responding MACs reduction is 38.31%. This is because of the computational over-
head related to the real-time restructuring of the data and kernel tensors within the 
GPU and prior to the computations, which is necessary for accommodating kernel 
switching capabilities.

5 � Conclusions

Recently a new CNN design approach has been proposed which allows a CNN 
to learn to use as few computing resources as possible, and conditionally execute 
specific filtering kernels, changing its size and form in real-time during inference, 
depending on the input data.

The proposed framework incorporates a new learning module, the Learning Ker-
nel Activation Module (LKAM), able to dynamically activate or de-activate a sub-
set of filtering kernels (and the corresponding channels), depending on the input 
image content during inference phase. Using this new module, the CNN learns dur-
ing the training phase how to reduce its size in real-time and thus to result in a sig-
nificant computational economy.

The conditional execution however employs a number of challenges when it comes 
to the implementation of these algorithms to embedded systems. Hence, in this paper 
we presented a systematic way of deploying this new dynamic pruning methodology 

Table 2   Inference speed of SQNet1.1/CaffeNet FOOD-101 datasets

Device Network CPU batch GPU batch Baseline time/
image (ms)

PI time/
image (ms)

Speedup (times)

MDP820 SQNet1.1 12 – 34.1 17.0 × 2.01
– 12 22.6 14.0 × 1.61
8 12 16.2 12.9 × 1.26

CaffeNet 8 – 86.0 58.7 × 1.47
– 12 53.8 32.6 × 1.65
4 6 42.4 27.8 × 1.53
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to implement CNN variants, in heterogeneous platforms that facilitate both CPU and 
GPU subsystems and we have discussed and presented specific implementation consid-
erations and alternatives.

Realtime measurements of embedded implementations in modern SoCs verify the 
efficacy of the proposed methodology and demonstrate the ability of the resulting net-
works to adapt their size to the complexity of the classification task.

Funding  This work has received funding from the European Union’s Horizon 2020 Research and Innovation 
Programme under grant agreement No. 780788.
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