
Vol.:(0123456789)

International Journal of Parallel Programming
https://doi.org/10.1007/s10766-020-00654-2

1 3

Deep Learning Inference with Dynamic Graphs
on Heterogeneous Platforms

V. Pothos1 · E. Vassalos1 · I. Theodorakopoulos1 · N. Fragoulis1 

Received: 6 August 2019 / Accepted: 31 January 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
One major drawback of deep-learning algorithms is the elevated cost of computing
complexity and memory bandwidth required for inference. In order to ameliorate
these costs in applications that utilize Convolutional Neural Networks (CNNs), a
new, radical, approach is the dynamic pruning of kernels which aims to the par-
simonious inference by learning to exploit and dynamically remove the redundant
capacity of a CNN architecture. This conditional execution approach formulates a
systematic and data-driven method for developing CNNs that are trained to eventu-
ally change size and form in real-time during inference, targeting to the smaller pos-
sible computational footprint. The conditional execution however, induces a number
of challenges when it comes to the implementation of these algorithms to embedded
systems. In this paper we present a systematic way of deploying this new dynamic
pruning methodology, in heterogeneous platforms that facilitate both CPU and GPU
subsystems. Realtime measurements of embedded implementations in modern SoCs
verify the efficacy of the proposed methodology and demonstrate the ability of the
dynamic networks to both adapt their size to the complexity of the task and deliver
significant computational gains during inference.

Keywords  Deep learning · Convolutional neural networks · Heterogeneous
platforms · Conditional execution · Dynamic pruning

1  Introduction

In recent years, there has been a surge of interest in the potential of Convolutional
Neural Networks (CNNs) and ever since they have been established as the domi-
nant technology for tackling real-world, visual understanding tasks. A significant
research effort has been put into the design of (very) deep architectures, able to con-
struct high-order representations of visual information. The accuracy obtained by

 *	 N. Fragoulis
	 nfrag@iridalabs.gr

1	 Irida Labs S.A., Patras, Greece

http://orcid.org/0000-0001-7788-2863
http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-020-00654-2&domain=pdf

	 International Journal of Parallel Programming

1 3

deep architectures on image classification and object detection tasks [1, 2], proved
that the depth of representation is indeed the key to a successful implementation.

Although high quality implementations are already available for mainstream, PC-
like computing systems, deploying such implementations into diverse technologi-
cal areas (i.e. automotive, transportation, IoT, medical etc.), requires development of
deep-learning architectures on embedded heterogeneous platforms that operate with
limited hardware resources and often within a restricted power budget. Authors in
[3] present a study of the available deep-learning frameworks, programming models,
general implementation limitations as well as real-world performance results on het-
erogeneous platforms, focusing on mobile phone SoCs and android OS. The scope
of this study though, is to represent general implementation guidelines rather than a
detailed scheme on how to deploy CNNs on such platforms.

Furthermore, meeting specific performance requirements on embedded plat-
forms is, in general, arduous, while building systems based on existing computing
libraries (e.g. BLAS, Eigen etc.), although possible, usually leads to only limited
effectiveness, according to the authors’ experience. Based on the above discussion
it becomes evident that improving such approaches requires tuning multiple com-
putational kernels for the particular use-case at hand, thus requiring great effort and
insight in order to be able to tweak—when and if necessary—any given architecture.

Structural plasticity, that is the ability of sparsely connected networks to change
their wiring and connectivity patterns, has proven to be a key mechanism of neu-
ronal circuits [4], increasing a network’s learning capacity through the expansion
of the “effectual connectivity”. A form of this mechanism can be integrated into
the deep CNN architectural models, the most demanding class of advanced infer-
ence algorithms, especially dominant in the field of vision-oriented applications. In
CNNs, the computational graph is organized into groups of nodes—called layers—
where the main operation is the convolution of an input tensor with a set of kernels
with learned weights. The connectivity of the computational graph, and the number
of kernels is defined during training and are fixed during inference.

Under this scheme, a form of dynamically altering connectivity can naturally
occur, by integrating a mechanism able to decide the number and identity of the ker-
nels that need to be computed during inference, based on the data being processed
on each occasion and discard the rest. Intuitively, such mechanism can effectively
enable a large number of sub-models to be potentially available, each of which using
a subset of the learned kernels and layers. That way, the capacity of the initial model
is increased, with apparent benefits to both accuracy and computational parsimony.
In fact, such models have proven to be effective for both simple [5] and more chal-
lenging applications [6]. Given the intrinsic bottlenecks occurring by the branching
operations on the computational flow of models with conditionally executed parts,
the question that arises is whether their theoretical advantages can be translated in
real time/power gains, when implemented in off-the-shelf heterogeneous platforms.

This paper focuses on some implementation techniques, that they enable effi-
cient porting of the approach explained above to modern heterogeneous SoCs, that
are optimized for high throughput and implement highly parallelized processing
schemes. Experimental evidence is demonstrated, supporting that popular mobile
SoCs featuring a number of CPU cores and GPUs such as Adreno and MALI, on

1 3

International Journal of Parallel Programming	

chipsets like Snapdragon 820 and Exynos 8, can actually deliver the predicted per-
formance benefits of this approach when utilized in a heterogeneous setup. The
outcome of the experiments indicates that with proper handling, the total overhead
induced by factors such as (i) extra operations for identifying the appropriate kernels
to be applied for each layer, (ii) memory re-organization, (iii) inter-device communi-
cations and branching-related delays, can be limited to ~ 10% of the overall compu-
tational time of an equivalent static model. Therefore, the exploitation of a dynamic,
conditional graph can be beneficial if it can deliver the same accuracy for a discount
over 10% in the computational budget, compared to the corresponding static solu-
tion. This is a rather modest goal for such techniques, which even for very challeng-
ing problems and compact CNN model architectures, can deliver more than 30%
reduction in overall (average) Multiply-ACcumulate (MAC) count compared to the
original model, without loss of accuracy [6].

2 � Reduction of the Computational Load of a Neural Network

2.1 � Static Pruning

The reduction of the computational load associated with a specific deep-learning
structure is the enabling factor towards the broadening of the application field of
these structures to IoT and in applications featuring a system with low computa-
tional capabilities, in general. In this direction, many researchers attempt to exploit
the data sparsity and the redundancy of the parameters inherent in CNNs in order
to prune some parts of the convolutional network and thus ease the computational
load of the overall structure, in an off-line, post-training approach. In some methods,
the coefficients of a CNN are analyzed after training and some of them are zeroed
according to their magnitude, leading to sparse matrices exploitable by sparse arith-
metic software. In some others, the CNN is trained in such a way so to result on a set
of coefficients containing as few insignificant coefficients as possible.

In a data-driven approach Hue et al. in [7] proposed a method which iteratively
optimizes the network by pruning unimportant neurons based on analysis of their
outputs on a large dataset.

Feng et al. [8] proposed a method for estimating the structure of the model by uti-
lizing un-labelled data. Their method called Indian Buffet Process CNN (ibpCNN),
captures the distribution of the data and accordingly balances the model between
complexity and fidelity.

Similarly, Wen et al. [9] incorporated Structured Sparsity Learning (SSL) in order
to regularize the number of filters (and their shapes), the number of channels and the
depth of the network. From an implementation perspective, SSL also targets to the
formulation of a dense weight matrix in order to completely remove channels, filters
or even whole layers.

Yang et al. [10] proposed an energy-aware pruning algorithm for CNNs that
directly uses energy consumption estimation of a CNN to guide the pruning process.
For each layer, the weights are first pruned and then locally fine-tuned with a closed-
form least-square solution to quickly restore the accuracy.

	 International Journal of Parallel Programming

1 3

Authors in [11] proposed a three-step method, which allowed them to prune
redundant connections without affecting the accuracy. In the first step, they train
a network to learn which connections are important. In the second stage, connec-
tions characterized as unimportant are pruned and in the last stage, the network is
re-trained in order to fine-tune the weights.

Similarly, in [12], authors target implementations for low power devices, by tak-
ing advantage of the sparsity immanent in intermediate filter responses in order to
reduce the spatial convolution at every layer. More specifically, they are inspired by
the loop perforation technique (originally proposed for source code optimization) in
order to skip the convolution operation at several locations.

2.2 � Dynamic Pruning

Since the main source of computational load in a CNN is the number of convolu-
tional kernels employed in each convolutional layer, one idea proposed in [6] and
reviewed here, is to enforce channel-wise sparsity to the outputs of each convolu-
tional layer. In this way, each kernel either learns how to capture useful information
or else vanishes. In contrast to the regularization approach [9], which tries to enforce
a global sparsity pattern in order to prune kernels and channels with zero output val-
ues, we propose a technique that enables kernels to learn information which may be
useful to a subset of the observed cases. One step forward, by enforcing this sparsity
via simultaneously learned, data-driven, kernel activation rules, the same rules can
be used during inference in order to avoid computing kernels which are not useful
for a particular datum. That way, only the relevant kernels are computed, resulting
to a significant economy in processing time and power. At the end of the training
procedure, kernels that have not managed to learn features that are relevant to any
of the data, resulting to zero utilization, can be permanently pruned from the model.

2.3 � The Learning Kernel‑Activation Module

Figure 1 depicts i-th and the (i + 1)-th convolutional layer of a typical convolutional
network and introduces the Learning Kernel-Activation Module (LKAM). The
LKAM links two consecutive convolutional layers and acts as learning switch, capa-
ble of switching on and off individual kernels of any layer depending on its input,
that is, the output of the previous convolutional layer.

The module learns which kernel to disable during the CNN training process,
which is for that reason specifically devised to facilitate such operation by exploiting
data sparsity usually employed in images.

The aim of these modules is initially to induce the desired channel-wise spar-
sity to the feature maps. Simultaneously, they learn an activation rule for each ker-
nel, which is later been exploited during the inference phase. Many types of activa-
tion rules can be formulated using regular differentiable functions, available in all
deep-learning frameworks. In this work one of the simplest and lightweight rules
is studied, constituting by a bank of 1 × 1 convolutional kernels followed by aver-
age pooling and a sigmoid function offering a smooth and differentiable transition

1 3

International Journal of Parallel Programming	

between active and inactive state. The choice of this rule was made in order to keep
the computational overhead of the LKAM modules as low as possible. The internal
structure of the LKAM module is shown in Fig. 2. First, the feature maps of the i-th
convolutional layer are fed into this module. These are processed by kfi + 1 kernels
of size 1 × 1 × Ci + 1 resulting into kfi + 1 feature maps. These maps are then fed into
a global average-pooling block, which averages the values of each map producing a
corresponding single number.

Fig. 1   The learning switch module is introduced between successive convolutional layers of a CNN

Fig. 2   The internal structure of a LKAM module

	 International Journal of Parallel Programming

1 3

Each one of this numbers is then passed into a sigmoid layer implementing the
following function:

In this way a vector SW =

{

sw1, sw2,… , swkfi+1

}

∈ ℝ
kfi+1 with values between

0 and 1, is formed.
The elements of this vector are used in the training phase, through the switch

S3, in order to multiply the values of the corresponding feature map in the
(i + 1)-th convolutional layer, thus imposing the desired sparsity. During this
phase, switches S2 in Fig. 1 and S3 in Fig. 2 are activated, while switches S1 in
Fig. 1 and S4 in Fig. 2 are deactivated. This way, the information flow is tweaked
by enforcing certain feature maps to gradually have smaller influence on the over-
all network under the corresponding rules, which are in turn co-adapting. The
goal of the training process is to obtain the combination of kernels and activation
rules that produce the sparsest SW vectors possible. The learned rules can indi-
cate the kernels with zero influence so as to be excluded from further computa-
tion. These invalidated kernels will eventually lead to excluding the respective
CNN channels from the overall computation load, resulting in both less MAC
operations and significant speedup in inference timings.

2.4 � Real‑Time Deactivation of Kernels During Inference (Recognition) Phase

During inference, the elements of the vector SW are used as a set of switches that
control the corresponding kernels in the (i + 1)-th convolutional layer, depend-
ing on the input from the i-th layer (Fig. 3). Since the value of each swi can be
any real number between 0 and 1, a simple thresholding is used as the activation
criterion, where the elements of the vector SW are binarized (i.e. forced to take
values 1 or 0) using a threshold value, thres, as follows:

(1)f (x) =
1

1 + e−k(x−x0)

Fig. 3   The switching process of the LKAM module during inference

1 3

International Journal of Parallel Programming	

The resulting binary activation values are the indicators of whether to apply the
corresponding filtering kernels on the input data or to skip these particular computa-
tions. Note that during inference, switches S2 in Fig. 1 and S3 in Fig. 2 are consid-
ered active while switches S1 Fig. 1 and S4 in Fig. 2 are considered inactive.

3 � Implementation Considerations of Dynamic Pruning

When the above-mentioned dynamic pruning scheme is applied over a convolutional
layer, fewer convolutional kernels are eventually used and the resulting feature map
consists of a three-dimensional tensor which has several invalidated channels. These
invalidated channels, that correspond to the kernels that were not used in the convo-
lution, should be excluded from any operation of any following-up layer that is using
their data. For network layers that may need to operate with data that are directly
related with the excluded channels, it’s important to have access to the information
of which channels have been excluded. That essentially means that Dynamic Prun-
ing requires considering pruning information transmission among network layers as
well. This information is usually an array of indices of the valid channels.

In this paper the focus in on Convolutional and Full Connected layer CPU/GPU
implementations since those layers contribute the most to the overall computational
complexity of the CNN.

3.1 � Implementation of Convolutional Layers

The implementation of a convolutional layer is based on General Matrix Multipli-
cation (GeMM) algorithms. GeMMs consist a well-studied problem and several
GeMMs implementations has been incorporated into a lot of highly optimized
libraries. Such implementations realize the data prefetching/caching, vectorization
and threading mechanisms, that do exist in modern heterogeneous systems, very effi-
ciently which in turn leads to lower latency and increased processing performance.

In general, the input feature maps of the convolutional layers need to be trans-
formed properly in order to be used with GeMMs. The required preprocessing trans-
formation is achieved via algorithms that convert the three-dimensional tensors to
two-dimensional arrays, properly designed for GeMM processing. These transfor-
mations, namely im2col (image-to-columns) or im2row (image-to-rows), come at
the costs of preprocessing speed and increased memory footprint as they do repli-
cate the data. Their preprocessing speed impact, however, compared to the following
up GeMM algorithms, is often negligible.

Assuming that the GeMMs algorithms are provided as optimized “black-box”
libraries, meaning that the end user has no access to view and modify their imple-
mentation, the im2col pre-processing step should incorporate all the necessary

(2)swi =

{

0, swi < thres

1, swi ≥ thres

	 International Journal of Parallel Programming

1 3

changes to accommodate the dynamic pruning throughout the whole convolution
process.

Given the predefined size of the kernels that are used in a convolution operation,
the im2col algorithm is designed to create a column with the corresponding input
tensor data that should be convolved with the kernel in order to result a number for
the output tensor. Supposing that there are Kn kernels of dimensions

[

Kc,Kh,Kw

]

 ,
then the im2col algorithm should produce, for every expected output, a column with
length equal to Kc × Kh × Kw . Supposing that the output of the convolution should
be a tensor of dimensions

[

Kn,H,W
]

 , then this can be achieved by the GeMM opera-
tion as provided in Eq. 3 and depicted graphically in Fig. 4.

The inactive kernels can be easily handled. They should not be included in the
left matrix of the GeMM formula (3) which corresponds to the gray parts of the
Fig. 4 that can be omitted. This means that the kernels array

[

Kn,Kc × Kh × Kw

]

should be replaced with the array

[

Ka,Kc × Kh × Kw

]

 where Ka ≤ Kn is the number
of active kernels for the convolution. For CPU-based implementation this change
will require a proper copy of the coefficients of the initial kernels to an intermediate
memory buffer according to the corresponding coefficients of the active kernels. In
the worst case scenario, where Ka = Kn − 1 , almost a full copy of the coefficients
in the intermediate memory will be required (note that if Ka = Kn there is no need
for intermediate buffer). The GeMM algorithm will then produce a tensor of shape
[

Ka,H,W
]

.
For the excluded input channels, further actions should be taken on the algo-

rithm implementation, such as the exclusion of these channels, by the im2col
algorithm, at its output. Since in the above-mentioned approach the output of
dynamic pruned convolutions will only contain the activated channels in a shape
[

Ka,H,W
]

 , the im2col algorithm eventually will not have to deal at all with the
inactive channels. However, the inactive channels should still be removed from
the coefficients of the convolution kernels. If the kernels have initial shape

(3)[Kn,Kc × Kh × Kw] × [Kc × Kh × Kw,W × H] = [Kn,W × H] == [Kn,H,W]

Fig. 4   Convolution with im2col and GeMM algorithms

1 3

International Journal of Parallel Programming	

[

K
�

n
,K

�

c
× K

�

h
× K

�

w

]

 , there are Ka ≤ Kn active input channels and K ′

b
≤ K

′

n
 active

kernels for the convolution. Hence, a proper copy of coefficients should take
place to result into coefficients of shape

[

K
�

b
,Ka × K

�

h
× K

�

w

]

 . Then, the GeMM will
produce the expected result as provided by the Eq. 4. A graphical depict of this
operation is given at Fig. 5, where two out of five inactive channels have been
excluded due to a previous dynamic pruning operation (light gray tone). Although
im2col algorithm will automatically ignore those excluded (non-existed) chan-
nels, proper care must be taken in the first part of the GeMM operation thus to
exclude also the coefficients of the convolution that corresponds to the excluded
channels (black tone). At the same time inactive kernels (gray tone) are taken into
consideration as analyzed before (Fig. 4).

The above procedure, described for CPU-based implementations, can be in
general also used for GPU-based implementations as well. However, GPUs offer
the ability to employ more efficient approaches avoiding issues such as data pre-
processing, especially if they require a lot of GPU memory (e.g. for im2col trans-
formations) or extra copying of coefficients to intermediate buffers.

The key to understand GPU OpenCL-based implementation is to understand
the notion of global and local workgroups (WGs) and workitems. A workitem
(WI) it can be seen as a thread that executes a block of code in parallel to other
WIs. Several WIs forms a local WG (LWG) and inside the LWG, the WIs can
have access to the same L1 cache and the local shared memory (LDS, if sup-
ported) which is relatively small but very fast. Typically, LDS is used to enable
coalesced accesses, to share data among the WIs in an LWG and reduce accesses
to global memory which is of lower bandwidth. Each WI inside the LWG can be
identified by unique local IDs that are available via built-in functions (i.e. get_
local_id()). It must be noted that, in general, not all the WIs inside an LWG are
executed in parallel but tends to be divided in sub-groups (wavefronts/warps) of

(4)

[

K�
b
,Ka × K�

h
× K�

w

]

×
[

Ka × K�
h
× K�

w
,W � × H�

]

=
[

K�
b
,W � × H�

]

==
[

K�
b
,H�

,W �
]

Fig. 5   Convolution with excluded input channels using im2col and GEMM

	 International Journal of Parallel Programming

1 3

WIs that are indeed executed in parallel. GPU scheduling mechanisms continu-
ously and properly activate the warps in the LWG, and among different LWG if
it’s possible, in order to hide latencies.

The size of a warp is important because if the WIs of the same warp are forced
to execute different code (for example via -if statements) all code-diverging paths
will be executed and the outcome will be masked in the end, increasing this way
the processing time. Each LWG is running on a Compute Unit on the GPU and all
the LWGs forms the global workgroup (GWG). That means that each LWG can
be identified by unique group IDs using the built-in functions (i.e. get_group_
id()). As all WIs are executing the same OpenCL function, the function’s code
must utilize the local and group IDs in order to properly process different kind of
data. The local and group IDs in OpenCL are expressed as a 3D notion i.e. they
are described by three different indices. Hence, each WI is identified by three
local ids and three group ids. The above description is depicted visually in Fig. 6.

Under the above design scheme of accessing and programming the GPUs, it
becomes obvious that the algorithms implementation can be quite different com-
pared to the CPUs. An approach to implement GPU algorithms is to start by map-
ping regions of output data to LWGs, trying to avoid multiple utilization of com-
mon input data among the different LGWs. The output should be also selected
in such way for the input to be cache friendly. Knowing the number of Compute
Units of the hardware, typically the number of LWGs should be a multiple of that
number in order to utilize at maximum all Compute Units.

In all our test-designs the GWG is designed to have three dimensions. In most
of the cases each dimension is related with a specific operational part of the con-
volution algorithm as depicted in Fig. 7. More specifically:

Fig. 6   GPU and WorkGroups/WorkItems interrelationship

1 3

International Journal of Parallel Programming	

1.	 One dimension is always referring to the batch processing, i.e. is related to the
image index that is processed during a batch processing. Based on this dimension
the input/output memory address pointers are changed accordingly.

2.	 Another dimension is usually referring to a number of convolutional kernels that
the LWG will process.

3.	 The remaining dimension is referring to the y-index of a block of an image that
is processed by the LWG.

The order of the index of the GWG dimensions in correspondence to the opera-
tional parts of the convolution, in most of the cases does affect the processing speed,
as it’s closely related to the order of the executed LWGs in each compute unit and
thus the way of using the intermediate caches. Therefore, different combinations of
indexing between of the GWG dimensions and the corresponding operation parts of
the code need to be evaluated in order to select the optimal one.

In some cases, however, where for example a convolution layer does have group-
ing, further dimensions can be used, encapsulated into the three dimensions. For
example, if the local id in the 0 dimension can take values lid0 ∈ [0, 64) then it can
produce two new local ids:

•	 lid0a = lid0 ÷ 32 : thus lid0a ∈ [0, 2) and can be used as group identifier for the 2
groups

•	 lid0b = lid0%32 : thus lid0b ∈ [0, 32) and can be used as WI index per group for
the 2 groups

For GPUs that support LDS memory inside the LWGs, custom code is written to
use as much WIs as possible in order to load reusable data in the LDS memory. Zero

Fig. 7   Graphical example of the correspondence between GWG dimensions with the convolutional ker-
nels and input data processing

	 International Journal of Parallel Programming

1 3

padding cases are also handled in this step by loading the data to specific position
of the LDS memory, having first filled once all that memory with zeros. Memory
synchronization usually occurs afterwards, unless the WIs that loads specific local
memory parts utilize only these parts later.

Further optimization involves the implementation of direct convolution operators
by using vectorized types (e.g. float4), broadcasting mechanism (e.g. first operand of
multiplication is common for many WIs and the load is broadcasted fast from local
memory), and registers for accumulation. This happens iteratively, among input
channels for any group of filters that each WI is responsible to calculate. At the end
a Rectified Linear Unit (ReLu) is applied using a vectorized build-in max function
and the partial results are stored in output memory. In cases where the convolutional
kernels do not have unitary spatial size, or in cases where padding or different than
one stride is required, the source code can become quite complex.

It should be noted that a key difference between the GPU-based and CPU-based
implementations, is that all copies of coefficients to temporal buffers are completely
avoided. Instead the indexes of the active kernels are held in a buffer and only the
WIs that work on those active kernels are activated and load properly the coeffi-
cients from the difference memory addresses. GPU’s prefetching mechanisms come
handy at this point as they hide well the latency of loading sparse memory addresses
(non-consecutive convolutional kernels in memory) by consecutive WIs.

3.2 � Implementation of Full Connected Layers

Common implementations of Full Connected (FC) layers, follow a Vector-to-Matrix
multiplication, a task that can be directly and efficiently handled by most of the
GeMM algorithms. For conditional computing implementation, the only occasion
that GeMM cannot properly handle directly is when the output of a convolution
layer must be interpreted as a one-dimensional array for the following FC layer. This
case is usually implemented via an additional “flatten” or “reshape” layer. As in the
case of the Convolutional layers the coefficients of the FC layer that corresponds
to excluded channels must be excluded from the GeMM operation too. However,
since the coefficients of the Full Connected layers are stored with a notion of two-
dimensional tensors, instead of four-dimensional arrays, the correspondence of the
excluded input channels to the coefficients of the Full Connected columns must be
taken into consideration in order to exclude them correctly from the GeMM opera-
tion. The exclusion of the coefficients is achieved by making use of a coefficients
buffer where only the coefficients that should take place in the GeMM operation are
stored.

From all the above it becomes evident that, for Dynamically Pruning Convolu-
tional and FC layers in CPU-based implementations using the GeMM approach,
there is a need of memory copies of the coefficients of the kernels to intermediate
buffers. These memory copies introduce an overhead in the overall performance that
in the worst case can lead to almost loading and storing one additional time the coef-
ficients of the network per inference. However, if the number of dynamic activated

1 3

International Journal of Parallel Programming	

kernels is not very high, depending the convolutional parameters, the gains on pro-
cessing speed/power can be quite significant.

In the case of GPU implementation, where the FC layer is realized as a vector to
matrix multiplication, an approach is to use each LWG to calculate the result of a
few kernels. By testing various implementations, the authors found that the optimal
way for achieving this is to iteratively use a number of N WIs to load consecutively
N input data and apply multiply-accumulation over a number of M FC kernels, hold-
ing the results in M registers. This approach is cache friendly and does not require
vectorized types. As in the CPU-based implementations, is important to know
which coefficients corresponds to which active channels. This requires an index-
ing array that maps the input tensor’s channels (before flattening) to corresponding
active kernels. Then, the procedure of the Full Connected layer is similar to non-
dynamic pruning case, with the exception that coefficients should be loaded from
indexed memory addresses. If the dynamic pruning procedure activates all the ker-
nels, the indexing mechanism can introduce latency of as large as 25% of the total
processing time. However, this indexing mechanism can lead to performance gains
for each inactive kernel. As an example, for a multiplication with dimensions [256,
4096] × [4096, 1] the processing time without the indexing mechanism takes roughly
12 ms in a MDP820’s GPU. When the indexing mechanism is engaged, the process-
ing time for the same multiplication is increased to 15.5 ms. For the dynamic prun-
ing case the number of the active kernels can be considerably smaller. For example,
in a case where only 47 out of 256 kernels are activated, the operation corresponds
to a multiplication with dimensions [47, 4096] × [4096, 1] and in that case exhibits
a processing time of just 3.5 ms. According to authors experiments, this is a general
trend, leading also to comparative performance gains for the overall network model.

4 � Experimental Results

Our analysis has been conducted in two different classification problems: (a) A food
recognition problem, utilizing the FOOD-101 database [13] comprised of images of
food, organized into 101 categories and (b) a general image recognition problem uti-
lizing the ImageNet ILSVRC 2012 [2] dataset comprised of images organized into
1000 categories. These two datasets have been chosen as two classification cases
featuring different qualities. In particular, FOOD-101 is considered as a less com-
plex classification case compared to the ILSVRC 2012 dataset due to the smaller
number of classes but featuring more abstract visual attributes since food styling can
be very diverge. On the other hand, ILSVRC 2012 dataset contains images mainly
depicting a single structured object, but similar classes are often discriminated by
very fine details.

In the same spirit, two popular CNN architectures have been evaluated: Caff-
eNet and SqueezeNet 1.1 [14]. CaffeNet is almost identical to AlexNet [1] archi-
tecture, being a conventional “vanilla” architecture with a medium-sized parameter
space but relatively shallow. On the other hand, SqueezeNet is a deeper architecture
incorporating more complex architecture, and although consisting of 50 times less
parameters compared to a CaffeNet, it has similar classification performance. The

	 International Journal of Parallel Programming

1 3

study of these two architectures that exhibit vastly different characteristics in terms
of redundancy, is used to highlight the ability of the proposed framework to achieve
the required computational parsimony under very different circumstances, by being
responsive to the complexity of the data and also to the complexity of the model.

4.1 � Recognition Accuracy

The recognition accuracy obtained by training the two architectures under the pro-
posed framework is summarized in Table 1. The threshold for the activation of ker-
nels is 0.5 and the classification accuracy was measured on the validation set for
ILSVRC and the test set for FOOD-101. The accuracy on the ILSVRC is compared
to the reference baseline models for CaffeNet and SqueezeNet1.1 available on-line.

It is evident that the introduction of an objective towards computational economy
has not degraded the obtained accuracy on either of the tested architectures. On the
contrary, we observe a notable improvement of the classification accuracy compared
to the reference models, on both datasets and both architectures. This reveals the
dynamic of the approach, regarding the overall control of the functionality of these
CNNs.

4.2 � Computational Load

The most important aspect of the presented framework though, is the improvement
on the required computational load during inference. A detailed analysis of these
two configurations is presented below.

Evaluation on CaffeNet has been contacted for both ILSVRC 2012 and FOOD-
101 datasets.

Engagement of the LKAM modules results on the reduction of the kernel filter-
ing operations. This is shown graphically in Fig. 8a, b through the respective kernel
activity profiles. In these plots, the vertical axis corresponds to the activation fre-
quency of a particular kernel throughout the validation set, while the horizontal axis
corresponds to the kernels of each layer, sorted by ascending utilization (from left to
right). For visualization purposes, the horizontal range is normalized and equal for
all layers, even though they accommodate different population of kernels. In such

Table 1   Recognition accuracy for the CaffeNet and SqueezeNet models on the ILSVRC 2012 and
Food101 datasets

PI stands for Parsimonious Inference approach (this paper)

Recognition Accuracy (%) ILSVRC 2012 FOOD-101

Top1 Diff. Top 5 Diff. Top1 Diff. Top 5 Diff.

AlexNet-Conv 57.27 – 80.62 – 68.54 88.44 –
AlexNet- PI 58.46 +1.19 81.21 +0.59 68.86 +0.32 88.61 +0.17
SqueezeNet 1.1-Conv 57.59 – 80.44 – 65.65 86.87 –
SqueezeNet 1.1-PI 59.59 +2.0 82.05 +1.61 67 +1.35 88.04 +1.17

1 3

International Journal of Parallel Programming	

an illustration, a step-like plot implies kernels that are mostly permanently switched
either off or on, while a smooth curve indicates kernels whose operation is data-
dependent. More specifically, the number of kernels that are calculated for each test
image is significantly lower than the nominal number of kernels in the original net-
works. This dramatically reduces the related number of mathematical operations. It
must be noted again that the reduction on the active kernels in a single layer, besides
the obvious benefit of avoiding the corresponding filtering computations, results into
a respective reduction in the number of input channels into the next layer. This in
turn, offers an additional computational gain, directly proportional to the number of
switched-off kernels.

A statistical analysis on the switching activity of the CaffeNet for ILSVRC 2012
dataset reveals that only 64.27% of the network’s kernels are active (on average)
throughout the validation set (35.73% reduction). Specifically, 75.55% of the layer 2
kernels, 57.03% of the layer 3 kernels, 46.93% of the layer 4 kernels and 77.58% of
the layer 5 kernels are, on average, activated.

The reduction of the computational load, in terms of the total MACs operations,
has been computed to be at 38.31% compared to the reference CaffeNet, taking also
into account the computational overhead introduced by the switching modules.

The same analysis on the FOOD-101 dataset indicates that throughout the valida-
tion set, only 14.52% of the kernels are activated in the layers of the network. Specif-
ically, 28.49% of the layer 2 kernels, 4.55% of the layer 3 kernels, 6.91% of the layer
4 kernels and 18.15% of the layer 5 kernels are activated on average. Evaluation on
SqueezeNet 1.1 has also been conducted on ILSVRC 2012 and FOOD-101 data-
sets. On the ILSVRC 2012 dataset, the engagement of the LKAM modules results
again to the reduction of the kernel filtering operations. This is shown graphically in
Fig. 9a, b. A statistical analysis on the switching activity of the SqueezeNet 1.1 for
the ILSVRC2012 dataset reveals that on average throughout the validation set, only
68.28% of the kernels are active in the layers of the network leading to a 31.72%
reduction.

The results for both CaffeNet and SqueezeNet networks clearly suggest that the
proposed architectural modification results into a significant reduction of the active

(a) (b)

Fig. 8   Kernel Activity Profile for CaffeNet: a ILSVRC 2012 dataset, b FOOD-101 dataset. A large part
of kernels remains permanently inactive

	 International Journal of Parallel Programming

1 3

kernels during inference time. Of equal importance is the fact that the networks
adapt their form and size, depending on the data and the complexity of the classifi-
cation problem: CaffeNet demonstrates a decrease in the average number of active
kernels necessary for carrying out the recognition on the FOOD-101 dataset com-
pared to that of the ILSVRC2012 dataset, regardless of being trained with the same
regularization gains. That means that the corresponding network features an excess
learning capacity, not needed for carrying out this classification task, having got rec-
ognized as such and automatically eliminated by the presented training scheme.

4.3 � Embedded Implementation and Inference Speed Measurements

The validity of the proposed dynamic pruning, parsimonious, approach has been
verified for the CaffeNet and SqueezeNet v1.1 architectures on four different plat-
forms, namely, the Intrinsyc MDP-820 (Qualcomm Snapdragon 820 with Kryo
ARM/Adreno 530 GPU), the Xiaomi Redmi Note 4 (Mediatek MT6797 Helio X20
with ARM/Mali-T880 MP4 GPU), the LG-G4 (Qualcomm SnapDragon 808 with
ARM/Adreno 418 GPU) and the Samsung S7 Edge (Exynos 8890 Octa with ARM/
MALI-T880 MP12 GPU) and the inference speeds of the above were compared with
the respective baseline models on the ILSVRC 2012 and FOOD-101 datasets and
by using different deep-learning frameworks such as Caffe, Caffe2, TensorFlow,
Neural SDK [15] and DeepAPI (deep-learning library/framework) developed by the
authors [16].

On the above-mentioned experiments the inference computations were either
a) assigned entirely to the respective CPU, b) offloaded to the GPU while CPU is
mostly used for housekeeping functions, or c) partitioned between the CPU and the
GPU. Table 2 depicts the timing performance of the a MDP820-based, parsimoni-
ous inference (PI) approach in the case of SqueezeNet v1.1(SQNet1.1) and CaffeNet
CNNs, on the FOOD-101 dataset, for specific combinations of CPU and GPU batch
sizes, indicating overall speedup of × 1.3– × 2.0 times is achievable, against the con-
ventional baseline CNN implementation, when the proposed, conditional execution
approach is deployed. Table 3 includes the acquired mean inference time measure-
ments for the two CNN architectures under considerations for both baseline and PI

(a) (b)

Fig. 9   Kernel Activity Profile for every layer (fire module) of SqueezeNet 1.1: a ILSVRC 2012 dataset,
b FOOD-101 dataset. For the easier FOOD-101 problem kernels are mostly either permanently active or
inactive

1 3

International Journal of Parallel Programming	

implementations, developed under different frameworks and running on various
devices and hardware (CPU and/or GPU or DSP).

In all these platforms the GPU is programmed in OpenCL, using hand-optimiza-
tions aiming to avoid any pre- and post- processing operations at convolutions lay-
ers, minimize memory usage by avoiding temporary memories, reduce as much as
possible the data transfers from/to GPU and efficiently exploit the de-activation of
the kernels.

From Table 3, it is evident that the implementations derived from the proposed PI
methodology lead to faster inference times due to the economy in the computations
of filtering kernels while not jeopardizing the CNNs accuracy. It must be noted how-
ever that the inference speed-up although proportional to the reduction of the total
MACs, is not equal to that. For example, for the GPU implementation of CaffeNet/
ILSVRC2012 in Samsung S7 Edge the speed up gain is about 28.3%, while the cor-
responding MACs reduction is 38.31%. This is because of the computational over-
head related to the real-time restructuring of the data and kernel tensors within the
GPU and prior to the computations, which is necessary for accommodating kernel
switching capabilities.

5 � Conclusions

Recently a new CNN design approach has been proposed which allows a CNN
to learn to use as few computing resources as possible, and conditionally execute
specific filtering kernels, changing its size and form in real-time during inference,
depending on the input data.

The proposed framework incorporates a new learning module, the Learning Ker-
nel Activation Module (LKAM), able to dynamically activate or de-activate a sub-
set of filtering kernels (and the corresponding channels), depending on the input
image content during inference phase. Using this new module, the CNN learns dur-
ing the training phase how to reduce its size in real-time and thus to result in a sig-
nificant computational economy.

The conditional execution however employs a number of challenges when it comes
to the implementation of these algorithms to embedded systems. Hence, in this paper
we presented a systematic way of deploying this new dynamic pruning methodology

Table 2   Inference speed of SQNet1.1/CaffeNet FOOD-101 datasets

Device Network CPU batch GPU batch Baseline time/
image (ms)

PI time/
image (ms)

Speedup (times)

MDP820 SQNet1.1 12 – 34.1 17.0 × 2.01
– 12 22.6 14.0 × 1.61
8 12 16.2 12.9 × 1.26

CaffeNet 8 – 86.0 58.7 × 1.47
– 12 53.8 32.6 × 1.65
4 6 42.4 27.8 × 1.53

	 International Journal of Parallel Programming

1 3

Ta
bl

e 
3  

M
ea

n
in

fe
re

nc
e

sp
ee

ds
 o

f C
aff

eN
et

/S
Q

N
et

1.
1

on
 IL

SV
RC

 2
01

2
an

d
FO

O
D

-1
01

 d
at

as
et

s (
ba

tc
h

12
) f

or
 b

as
el

in
e

an
d

pa
rs

im
on

io
us

 in
fe

re
nc

e

D
ev

ic
e

C
N

N
 m

od
el

D
at

as
et

Im
pl

em
en

ta
tio

n
ty

pe
Im

pl
em

en
ta

tio
n

fr
am

ew
or

k
M

ea
n

in
fe

re
nc

e
tim

e
(m

s)

C
PU

G
PU

C
PU

 +
 G

PU
D

SP

M
D

P8
20

SQ
N

et
 v

1.
1

Fo
od

-1
01

B
as

el
in

e
C

aff
e

27
0.

0
–

–
–

C
aff

e
2

21
9.

0
–

–
–

Te
ns

or
 fl

ow
39

0.
0

–
–

–
SN

PE
-P

I
71

.7
16

.3
–

22
.3

D
ee

pA
PI

28
.3

21
.4

16
.2

–
Pa

rs
im

on
io

us
D

ee
pA

PI
17

.0
14

.0
12

.9
–

C
aff

eN
et

B
as

el
in

e
SN

PE
12

8.
3

34
.4

–
87

.6
D

ee
pA

PI
85

.5
55

.5
42

.4
–

Pa
rs

im
on

io
us

D
ee

pA
PI

58
.7

30
.2

27
.8

–
IL

SV
RC

20
12

B
as

el
in

e
D

ee
pA

PI
–

54
.9

–
–

Pa
rs

im
on

io
us

D
ee

pA
PI

–
50

.7
–

–
LG

 G
4

SQ
N

et
 v

1.
1

Fo
od

-1
01

B
as

el
in

e
D

ee
pA

PI
96

.4
11

2.
1

73
.2

–
X

ia
om

i R
ed

m
i N

ot
e

4
C

aff
eN

et
Fo

od
-1

01
B

as
el

in
e

D
ee

pA
PI

–
25

0.
2

–
–

Pa
rs

im
on

io
us

D
ee

pA
PI

–
10

7.
1

–
–

IL
SV

RC
20

12
B

as
el

in
e

D
ee

pA
PI

–
25

0.
7

–
–

Pa
rs

im
on

io
us

D
ee

pA
PI

–
19

0.
0

–
–

Sa
m

su
ng

 S
7

Ed
ge

C
aff

eN
et

Fo
od

-1
01

B
as

el
in

e
D

ee
pA

PI
–

11
0.

0
–

–
Pa

rs
im

on
io

us
D

ee
pA

PI
–

36
.4

–
–

IL
SV

RC
20

12
B

as
el

in
e

D
ee

pA
PI

–
11

0.
0

–
–

Pa
rs

im
on

io
us

D
ee

pA
PI

–
78

.9
–

–

1 3

International Journal of Parallel Programming	

to implement CNN variants, in heterogeneous platforms that facilitate both CPU and
GPU subsystems and we have discussed and presented specific implementation consid-
erations and alternatives.

Realtime measurements of embedded implementations in modern SoCs verify the
efficacy of the proposed methodology and demonstrate the ability of the resulting net-
works to adapt their size to the complexity of the classification task.

Funding  This work has received funding from the European Union’s Horizon 2020 Research and Innovation
Programme under grant agreement No. 780788.

References

	 1.	 Russakovsky, O., Deng, J., Su, H., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput.
Vis. 115, 211–252 (2015). https​://doi.org/10.1007/s1126​3-015-0816-y

	 2.	 Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural net-
works. In: Proceedings of Advances in Neural Information Processing Systems (NIPS), pp. 1097–1105
(2012)

	 3.	 Ignatov, A., Timofte, R., Chou, W., et al.: AI Benchmark: running deep neural networks on android smart-
phones. https​://arxiv​.org/abs/1810.01109​ (2018). Last Revised 15 Oct 2018

	 4.	 Knoblauch, A., Körner, E., Körner, U., Sommer, F.T.: Structural synaptic plasticity has high memory
capacity and can explain graded amnesia, catastrophic forgetting, and the spacing effect. PLoS ONE
9(5), e96485 (2014). https​://doi.org/10.1371/journ​al.pone.00964​85

	 5.	 Bengio, E., Bacon, P.L., Pineau, J., Precup, D.: Conditional computation in neural networks for faster mod-
els. https​://arxiv​.org/abs/1511.06297​ (2015). Last Revised 7 Jan 2016

	 6.	 Theodorakopoulos, I., Pothos, V., Kastaniotis, D., Fragoulis, N.: Parsimonious inference on convolutional
neural networks: learning and applying on-line kernel activation rules. https​://arxiv​.org/abs/1701.05221​
(2017). Last Revised 31 Jan 2017

	 7.	 Hu, H., Peng, R., Tai, Y.-W., Tang, C.-K.: Network trimming: a data-driven neuron pruning approach
towards efficient deep architectures. https​://arxiv​.org/abs/1607.03250​ (2016). Submitted on 12 Jul 2016

	 8.	 Feng, J., Darrell, T.: Learning the structure of deep convolutional networks. IEEE Int. Conf. Comput. Vis.
(ICCV) 2749–2757, 1135–1143 (2015)

	 9.	 Wen, W., Wu, C., Wang, Y., Chen, Y., Li, H.: Learning structured sparsity in deep neural networks. In:
Proceedings of Advances in Neural Information Processing Systems (NIPS), pp. 2074–2082 (2016)

	10.	 Yang, T.J., Yu-Hsin, C., Vivienne, S.: Designing energy-efficient convolutional neural networks using
energy-aware pruning. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 6071–6079 (2016)

	11.	 Han, S., Pool, J., Tran, J., Dally, W.J.: Learning both weights and connections for efficient neural net-
works. In: Proceedings of Advances in Neural Information Processing Systems (NIPS), pp. 1135–1143
(2015)

	12.	 Figurnov, M., Vetrov, D., Kohl, P.: PerforatedCNNs: acceleration through elimination of redundant con-
volutions, https​://arxiv​.org/pdf/1504.08362​ (2015). Last Revised 16 Oct 2016

	13.	 Bossard, L., Guillaumin, M., Van Gool, L.: Food-101—mining discriminative components with ran-
dom forests. In: Fleet D., Pajdla T., Schiele B., Tuytelaars T. (eds.) Computer Vision—ECCV 2014.
ECCV 2014. Lecture Notes in Computer Science, vol. 8694. Springer, Berlin (2014)

	14.	 Forrest, N.I., Song, H., et al.: SqueezeNet: AlexNet-level accuracy with 50 × fewer parameters
and < 1 MB model size. https​://arxiv​.org/abs/1602.07360​ (2016). Last Revised 4 Nov 2016

	15.	 Qualcomm Neural Processing SDK for AI (https​://devel​oper.qualc​omm.com/softw​are/qualc​omm-neura​
l-proce​ssing​-sdk). Accessed 2019

	16.	 Irida Labs S.A. (https​://www.irida​labs.gr). Accessed 2020

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.1007/s11263-015-0816-y
https://arxiv.org/abs/1810.01109
https://doi.org/10.1371/journal.pone.0096485
https://arxiv.org/abs/1511.06297
https://arxiv.org/abs/1701.05221
https://arxiv.org/abs/1607.03250
https://arxiv.org/pdf/1504.08362
https://arxiv.org/abs/1602.07360
https://developer.qualcomm.com/software/qualcomm-neural-processing-sdk
https://developer.qualcomm.com/software/qualcomm-neural-processing-sdk
https://www.iridalabs.gr

	Deep Learning Inference with Dynamic Graphs on Heterogeneous Platforms
	Abstract
	1 Introduction
	2 Reduction of the Computational Load of a Neural Network
	2.1 Static Pruning
	2.2 Dynamic Pruning
	2.3 The Learning Kernel-Activation Module
	2.4 Real-Time Deactivation of Kernels During Inference (Recognition) Phase

	3 Implementation Considerations of Dynamic Pruning
	3.1 Implementation of Convolutional Layers
	3.2 Implementation of Full Connected Layers

	4 Experimental Results
	4.1 Recognition Accuracy
	4.2 Computational Load
	4.3 Embedded Implementation and Inference Speed Measurements

	5 Conclusions
	References

