
1 

Alexis Filippakopoulos, Dimitris Kastaniotis, Christos Theocharatos, Vangelis Vassalos 

Irida Labs 

Personalization in Distributed tinyML Applications via Adaptive Clustered 

Federated Learning 

Introduction 

From smart gadgets to cameras and sensors, IoT devices produce an immense volume of 

data. Due to the distributed nature of these devices, the data produced is highly decentralized and 

heterogeneous. Therefore, a need for AI solutions that consider this decentralized nature of the 

data, along with the constraints imposed by the IoT setting, while operating in a privacy-

preserving manner becomes increasingly apparent. 

Federated Learning (FL) allows multiple edge devices, referred to as clients that 

constitute a network, to collaboratively train a shared global model, capable of inferring from all 

tasks within that network. Each client trains its model locally, on its own data, sharing only its 

updated parameters. Training is coordinated by a central entity, referred to as the server, whose 

role is to broadcast the initial weights within the network, receive the updated parameters of all 

participants, aggregate the global model (FederatedAveraging) and broadcast it within the 

network. This constitutes a complete global training round in a federated setting. As a result, 

local data remains on the edge, rendering it decentralized, while the parameter-only exchange 

between clients and the server preserves, to an extent, both user and data privacy. However, real-

world applications are defined by statistical heterogeneity among local distributions, diversity in 

tasks, as well as non-IID network-wide distributions. Due to these inherent problems, FL’s 

convergence, along with the generalization capabilities of the global model, can be severely 

hindered, resulting in many clients being better off training solely on their local data. 
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In this light, Personalized Federated Learning (PFL) acknowledges the benefits of -

accessing rather inaccessible data in a privacy-preserving manner and aims to equip each client 

with a unique and personalized model instance, tailored to its local data and client-specific tasks. 

The dominant approaches for achieving personalization, include but are not limited to, local fine-

tuning, multi-task learning, model regularization and model interpolation by mixing the global 

model with each local model.  

 

Figure 1. Visual representation of the federated framework. 

 

Our approach, adopts model interpolation for obtaining robust client-specific models. 

Focusing on personalization and aiming to improve in-distribution generalization, we opt for 

Hierarchical Clustering based on the cosine similarities between local models’ weights. We 

adaptively construct clusters of clients with similar tasks, effectively minimizing the divergence 

between local and global distributions. Consequently, we observe a significant increase in 
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performance, while exploring non-IID settings of increasing statistical heterogeneity and task 

diversity, among all local distributions. 

Problem Formulation 

Let a population of 𝑘 ∈ {1, … , 𝐾} clients, each maintaining a local distribution 𝐷𝑘, of 

size |𝐷𝑘|, on domain Ξ ≔ X × 𝑌, where 𝑋 ∈  ℝ𝑑 is the input domain and 𝑌 ∈  ℝ𝑇 is the label 

domain. We denote as 𝐷̅ = ∪ 𝐷𝑘
𝐾
𝑘=1  the network-wide (global distribution), which corresponds 

to the joint distribution of all 𝐾 local distributions 𝐷𝑘. 

For any model ℎ ∈ ℋ, the loss function is defined as ℓ: ℋ × Ξ → ℝ+, while the true and 

empirical risks for said model ℎ at a specific local distribution 𝐷𝑘 are denoted as 

ℒ𝐷𝑘
(ℎ) =  𝔼(𝒙,𝑦)~𝐷𝑘

 [ℓ(ℎ(𝒙), 𝑦] and ℒ̂𝐷𝑘
(ℎ) respectively. Thus, any client 𝑘 training its model 

(ℎ𝑘) on 𝐷𝑘  will obtain ℎ𝑘
∗ = 𝑎𝑟𝑔𝑚𝑖𝑛ℒ̂𝐷𝑘

(ℎ𝑘). 

In this setting, FL aims at obtaining a global model ℎ̅∗ = 𝑎𝑟𝑔𝑚𝑖𝑛ℒ̂𝐷̅(∑
|𝐷𝑘|

|𝐷̅|

𝐾
𝑘=1 ℎ𝑘). 

Similarly, PFL via model mixing constructs the personalized model of a client 𝑘 with the 

following convex combination: ℎ𝑘
∗ = 𝜆ℎ𝑘

∗ + (1 − 𝜆)ℎ̅∗, where 𝜆 is the mixing parameter and 

thereby ℎ𝑘
∗ = 𝑎𝑟𝑔𝑚𝑖𝑛ℒ̂𝐷𝑘

(𝜆ℎ𝑘
∗ + (1 − 𝜆)ℎ̅∗). 

The primary issue of this approach stems from the mixing of the global model ℎ̅∗ with 

every client model ℎ𝑘
∗ . Specifically, the greater the divergence between 𝐷̅ and 𝐷𝑘, the more 

likely we are to obtain a suboptimal set of parameters for ℎ𝑘
∗  and subsequently a worse fit for 𝐷𝑘 .  

Motivation 

An FL protocol can host thousands of edge devices simultaneously, thus, under the 

assumption of task diversity, there is a high probability that the network-wide distribution 𝐷̅ will 

significantly diverge from some local distributions 𝐷𝑘. Hence, a mechanism for identifying and 
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grouping similar clients into subpopulations, whose joint distribution will diverge less from 𝐷𝑘 

compared to 𝐷̅, is critical if we wish to maximize personalization.  

In this light, Clustered Federated Learning (CFL) aims to do exactly that. However, how 

should one measure distribution/task similarity with no apriori knowledge of both? Both 

empirically and theoretically, parameters that are updated based on a fixed distribution are 

reflective of that distribution. Therefore, each client could pre-train its model for some E epochs 

and transmit its weights to the server to be used for measuring distribution similarity. There are 

many approaches for measuring similarity in high-dimensional spaces such as the Euclidean 

Distance, the Manhattan Distance and the Cosine Similarity, which are all valid options. 

 

Figure 2. Visualization of the difference between local, cluster-level and global distributions. 

 

Methodology 

We opt for Hierarchical Clustering based on the cosine similarities of all client weights, 

to deduce the optimal subpopulations with similar tasks and distributions. The choice for cosine 
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similarity is based on empirical results drawn from extensive experimentation. We have found 

that cosine similarity with a threshold t=0.9, consistently finds the optimal clusters. Thereon, we 

do not diverge from the typical FL training procedure and our framework can be summarized in 

the following algorithm: 
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Similarity Experiments 

Since obtaining the optimal clusters is critical for improving personalization, we must 

define a robust mechanism for measuring distribution similarity. It is proven that model 

parameters are highly associated with the underlying distribution that is modeled. Hence, after 

each client receives the initial weights (ℎ0), it trains on its local distribution for E epochs before 

transmitting those weights (ℎ𝑘
𝐸) back to the server to be used for calculating distribution 

similarities.  

 

We aim to answer the following questions: 

1. Should we use all layers’ weights or partial weights? 

2. How long should a client train for his weights to adequately reflect its local distribution? 

 

We set up three experiments with increasing amounts of task overlap and statistical 

heterogeneity among the clients. We utilize a CNN, comprised of 5 convolutional and 1 full 

connected layers, for a total size of 511KBs. Each client is trained and tested on a subset of 2 or 

3 of the CIFAR-10 classes. We create a pathological Non-IID setting by constructing imbalanced 

subsets of the CIFAR-10 dataset. 
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Figure 3. Visualizing the similarities between convolutional and fully connected layers of different client for 

different amounts of task overlap and statistical heterogeneity, in heatmap form. 

 

The insights to be drawn from the figure above could be summarized in the following key points.  

 

• Firstly, as other empirical experiments have shown, convolutional layers are not task-

specific but rather general feature extractors, thus considering them when calculating any 

distance/similarity measure between parameters is not beneficiary.  

• On the contrary, dense layers are task-specific and thus considering only them, will result 

in more precise measurements with less computations needed, compared to considering 

all layers. 
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• Secondly, pre-training for prolonged periods does not necessarily translate to greater 

precision in our similarity measurements. For the first two experiments the optimal 

clusters are formed with 2 epochs of training and maintained as the epochs increase. 

However, for the third experiment, as the epochs progress the second cluster loses its 

structure. 

 

This argument is further reinforced by the following figure, where we plot the similarities 

computed during the different training checkpoints on the same client population. 

 

 

Figure 4. Visualizing the fully connected layer similarity between clients with different amounts of statistical 

heterogeneity in simple line form. 

 

We observe that extended training epochs lead to increased parameter similarity across 

clients, but the relative similarity between specific pairs remains relatively unchanged. This is 

indicative that there is no need for excessive pre-training, since with few epochs, model 

parameters seem to encapsulate enough information about the underlying distribution, to enable 

adequate similarity measurements. 
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Performance Experiments 

To evaluate the framework’s performance, we employ 16 clients and set up two 

pathological Non-IID settings, with imbalanced local distributions, using CIFAR-100 classes. 

Firstly, simulating a scenario where all tasks within a cluster are shared by all its clients, we 

assign two tasks per client for a total of 16 tasks with the optimal number of clusters being 8. 

Conversely, we simulate a scenario where within each cluster there are tasks that do not concern 

all clients, we assign three tasks per client for a total of 20 tasks with 4 optimal clusters. Again, 

we opt for the same CNN, comprised of 5 convolutional and 1 full connected layers, for a total 

size of 511KBs. To assess the network’s overall performance, we average all metrics across our 

clients. 

 

Figure 5. Validation loss among clients in a Non-IID setting, with different amounts of statistical heterogeneity and 

task overlap, with respect to λ. Comparing the effectiveness of clustering similar clients as previously described. 
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Figure 6. Test accuracy among clients in a Non-IID setting, with different amounts of statistical heterogeneity and 

task overlap, with respect to λ. Comparing the effectiveness of clustering similar clients as previously described. 

 

Our conclusions can be summarized to the following points: 

1. It is evident that clustering and cluster-level global models have a tremendous impact in 

model convergence and performance, compared to plain personalization. Furthermore, 

the difference between FedAvg (no clustering 𝜆 = 0) with all the other approaches, 

highlights the need for personalization in federated settings. 

2. From the validation figure, we deduce that clustering reduces oscillations and smoothens 

the loss’s convergence, by preventing the models from drifting too much from their local 

distributions. Additionally, clustered clients reach lower convergence points, indicating a 

better fit on the data. 

3. From the accuracy figure, it is conspicuous that the clustering framework steadily 

outperforms its counterpart, reaching an average of +12% and +11%, on our respective 

experiments, in terms of test set accuracy. 

4. Regardless of clustering or not, no particular 𝜆 stands out compared to others, besides no-

-clustering 𝜆 = 0, which does not personalize and is the worst performing. Interestingly 
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though, on the 2-tasks experiment, the highest recorded precision belonged to no-

clustering 𝜆 = 0. This suggests, that in Non-IID and imbalanced settings, constructing 

only one global model will result in a bias towards the majority tasks, leading to fewer 

predictions for underrepresented tasks, which tend to be correct and hence inflate the 

model’s precision. 

5. A general rule for choosing an appropriate 𝜆 is the following. As λ increases we 

incorporate more of the locally trained model in each aggregation and vice versa. Thus, 

the more we expect a local distribution to diverge from its cluster-level or global 

distribution, the greater 𝜆 should be. 

6. The difference in performance between the two experiments is attributed to the 

constrained capacity of our classifier. Given more parameters, the models would have 

performed better but with notable differences between using and not using clustering. 

 

Figure 7. Test accuracy among clients in a Non-IID setting, with different amounts of statistical heterogeneity and 

task overlap, with respect to λ. Comparing the effectiveness of clustering similar clients as previously described. 

 


